Archive

Archive for the ‘Cypress’ Category

Cypress on Indian semicon industry trends; launches PSoC 3 and PSoC 5 architectures

September 14, 2009 4 comments

Cypress Semiconductor claims to have revolutionized the embedded design space with its high performance, low power PSoC 3 and PSoC 5 programmable system-on-chip architectures.

Rajeev Mehtani, Senior Vice President, Cypress Semiconductor, India Operations.

Rajeev Mehtani, Senior Vice President, Cypress Semiconductor, India Operations.

Thanks to some great work done by my associate Usha Prasad, and Cypress’ Meghna Bhutoria, I was able to find out more about this launch in an in-depth conversation with Rajeev Mehtani, Senior Vice President, Cypress Semiconductor, India Operations. I also discussed with him, the India advantage for Cypress, as well as his views regarding the Indian semiconductor industry today.

PSoC and its benefits

Cypress’s PSoC is the world’s only programmable embedded SoC integrating configurable analog and digital peripheral functions, memory and a microcontroller on a single chip. It is a revolutionary design methodology.

A number of analog and digital components are available. Then there’s an MCU. Typically, if you take an MCU, everything is fixed. In the PsoC, everything is programmable. ASIC is the end game in full programmability. For PSoC, you can immediately go on with designing the product. You can even make changes as you design. You are not paying for ASIC pricing!

The three main values a PSoC provides customers are:

Integration: The ability to integrate discrete components and reduce BoM costs, reduce manufacturing costs (PCB layout costs), and reduce power consumption with fewer devices.

Programmable Analog: The ability to integrate analog discrete components like amps, filters, ADCs, etc as well as to integrate signal conditioning.

Flexibility: The traditional benefit of programmability—ability to continuously be able to respond to change, real-time and parallel prototype/design/production of products to get to market faster.

PSoC 3 and PSoC 5 architectures

Cypress is introducing new, scalable architectures to extend the PSoC design methodology to the precision analog, programmable digital and high performance 8- to 32-bit world. The PSoC 3 and PSoC 5 architectures consist of numerous product families per architecture with hundreds of devices under each family.

Cypress PSoC

Cypress PSoC

The PSoC 3 and PSoC 5 architectures are powered by high performance, industry-standard processors:

* PSoC 3 architecture is based on a new, high-performance 8-bit 8051 processor with up to 33 MIPS.

* PSoC 5 architecture includes a powerful 32-bit ARM Cortex-M3 processor with up to 100 DMIPS.

Features of the new PSoC 3 and PSoC 5 architectures include: programmable precision analog sub-system, programmable high-performance digital sub-system, high-performance CPU sub-systems, industry leading low power, and programmable and feature-rich I/O and clocking.

PSoC to change way embedded designers solve problems

PSoC removes the barriers designers face with fixed function MCUs. Programmable analog and digital blocks in PSoC give designers the flexibility to adapt to changing requirements quickly and easily, while designing products that specifically meet market demands.

Flexibility

We work in an environment where change is the only constant. PSoC gives designers the flexibility to:

• Add new features to the application.

• Differentiate their products.

• Makes it easy to tune and adjust their designs during debug/system bring-up.

With ASICs and traditional SoC offerings, semiconductor companies around the world offer an assortment of choices — but in the end designers still end up compromising on the system features or on the price they are willing to spend. However, with PSoC, they can optimize, rather than force these compromises and in the end get more functionality, in some cases greater than 100 percent efficiencies, at lower system costs and better power savings, to and get exactly what they need.

Let’s take an example using a typical lifecycle development model. The product marketing group identifies and defines the next big consumer electronic product that’s going to revolutionize the world. Only problem, they’re not exactly sure they fully understand what the requirements are yet but know they need to get moving in order to get the product to market quickly. So, they hand over a set of requirements to the designers who in turn identify what functional components they are going to need to deliver; rough layout, there is some early research and they are usually successfully past the architecture definition milestone in the design lifecycle.

However, as the final architecture design is reviewed and further progress is made through the other phases to get the product into production, marketing continues to clarify the requirements and the developers are expected to quickly adapt those in the design. And this adapting means complete redesigns at every stage of the process. With PSoC, designers have the means to adapt by using the programmable fabric within their device to swap out components, add or remove components and keep the design cycle moving in the right direction—all the way through to production. Read more…