Archive

Archive for the ‘microcontrollers’ Category

STMicroelectronics unveils STM32 F-2 series of MCUs

STM32 F-2 block diagram.

STM32 F-2 block diagram.

STMicroelectronics has unveiled its roadmap for ARM Cortex-M4 and -M0 with products sampling from mid 2011 onward and production by end of 2011. It has also unleashed the full performance of the Cortex-M3 with its latest STM32 F-2 series.

According to Vinay Thapliyal, technical marketing manager, MCU, STMicroelectronics, India, there are over 30 new part numbers, pin-to-pin and software compatible with existing STM32 devices.

He said: “Today, we already have 110 parts running for the F-1 series, which is currently existing and in full production. Now, we are extending the family. This time, we have launched the F-2 family — the highest performance family — to unleash the ultimate performance of Cortex-M3.” Naturally, the F-2 series is benefiting the existing F-1 devices.

As mentioned, 30 new devices will be launched. They are already ramping now. “All of these belong to the high-performance, low-power family. We will also be revealing our roadmap for M4 and M0 — to be  in production by end of 2011, with sampling by middle of 2011.”

ST’s F-2 series will further enhance real time preformance. Thapliyal added that ST has built in ART accelerator into these devices. This will deliver 150 DMIPS (Dhrystone MIPS) at 120MHz.

The adaptive real-time memory accelerator unleashes the Cortex-M3 core’s maximum processing performance equivalent to 0-wait state execution Flash up to 120 MHz.

The ART accelerator is a pre-fetch queue and branch cache mechanism that stores the first instructions and constants of the branches, interrupt and subroutine calls. The penalty occurs the first time those events occur like for any pipelining mechanism.

After that, the instructions stored in cache are pushed immediately in the pref-etch queue upon recognition of a stored branch address. In addition, the embedded Flash is organized in 128-bit rows, allowing up to 8 (16-bit) instructions to be read per access. Read more…

TI on green power and MCUs

Here’s the second part of the TI roundtable, held recently.

Green power and TI

Ramprasad Ananthaswamy, director, Power Management Products, Texas Instruments India, discussed the various aspects of green power. The notion of energy and power management has become central to every country’s foreign policy, including India. The current demand is 2.1 billion units, and rising, while only 1.85 billion units are currently available.

The power IC landscape is rapidly evolving – new technologies are being developed. Even well established mega-markets are changing process technologies that are used – driven, for example, by the integration of added sensor functionality.

Ananthaswamy highlighted TI’s role in green power. TI, along with leading energy harvesting vendors, are creating a complete ecosystem allowing designers to not only envision but also create a battery-less world. Also, TI’s LED lighting portfolio and worldwide technical support network are helping LED designers achieve their goals faster.

Think MCUs

Shailesh Thakurdesai, business development manager – Microcontrollers, touched upon the role of MCUs. For instance, are you aware that an average person touches approximately 300 microcontrollers in a day? Almost every electronic device that an average person touches through the course of the day features an MCU. MCUs are everywhere — in applications like personal healthcare and fitness, security, automotive safety & infotainment and consumer electronics.

From energy harvesting to aiding cutting-edge medical applications to bringing healthcare into homes, MCUs have helped to make a difference in the way people use electronics. In the energy segment, MCUs are used in:

* Street/ commercial LED lighting, home lighting etc.
* UPS, battery chargers and inverters.
* Energy harvesting, renewable energy generation, solar micro inverters etc.
* Metering – energy, water, gas.
* MCUs help arm modern-day electronics with longer battery life, portability and functionality.

In healthcare, it can be used for applications like personal healthcare and fitness equipment, portable healthcare devices like digital thermometers, handheld ultrasound, blood pressure meters, etc. It is also used in consumer electronics like mobile phones, computers, TVs, toys, etc. Read more…

Infineon's wireless strategy focuses on low cost solutions and smartphones

Fairly recently, thanks to the great efforts of Infineon’s Abhinav Alok, I was able to meet up with Dr Matthias Ludwig, Head – Wireless for APAC and Infineon Korea and Peter Schaefer, VP & GM, Head – Microcontrollers, Infineon.

However, post the meeting, to my horror, I misplaced my notes and only managed to locate them last week. My apologies to Infineon for being late with this blog post.

I was able to discuss Infineon’s wireless strategy with Dr Ludwig and also managed a peek at Infineon’s range of microcontrollers during my discussion with Peter Schaefer. First, let’s have a look at the company’s wireless strategy.

Dr Matthias Ludwig said: “We are good in RF and baseband. There are about 1.5 billion RF transceivers out there globally, from Infineon.” He added that one third of the market falls in the low cost mobile phone segment.

Infineon’s wireless strategy is two fold — low cost solutions and the smartphone platform — where the company is focusing on the modem and the RF side, respectively. Infineon’s Android based smartphone platform uses an ARM 11 baseband. “Customers can come up with their own application processor,” Dr Ludwig said. “Our strategy gives us a lot of flexibility.”

He mentioned that Infineon receives a lot of requests from customers for smartphones at $100 solutions. “We believe that we can manage our single core Android platform in the $100 segment.”

Thanks to Dr Ludwig, I had a first hand experience of some of the smartphones that Infineon is currently working on. Actually, think about it! A $100 dollar (and even sub $100) smartphone may be just the thing Indians would love to have.

As for Infineon’s India strategy — part of the focus is on low cost. “We know that there is tough competition out there,” noted Dr. Ludwig. One other aspect that Infineon is focusing on is: how to develop and build an ecosystem in the country.

Of course, Infineon is also looking beyond the Indian market when it is developing solutions. In that respect, Dr Ludwig added that one of Infineon’s focus is to find the sweet spots that are not only of interest to India. “There is a certain drive to have low end products. Safety and reliability of the products are also important,” he concluded.

I will add a separate post on the conversation with Peter Schaefer, VP & GM, Head Microcontrollers, Infineon.

Analog and MCUs stand out: Dr. Bobby Mitra, TI

Dr. Biswadip (Bobby) Mitra, president & MD, TI India.

Dr. Biswadip (Bobby) Mitra, president & MD, TI India.

It is always a pleasure to listen to Dr. Biswadip (Bobby) Mitra, president and managing director, Texas Instruments India. Therefore, when Texas Instruments India invited me to a media roundtable today, it was an event to look forward too. However, the famous Bangalore traffic jam held me up so long that I missed out on most of Dr Mitra’s keynote! Nevertheless, I did catch some bits of it toward the end.

Dr. Mitra noted that LEDs and lighting applications are becoming a key area for growth in India. He added that the industrial segment is just right in terms of applications in electronics growth.

In telecom, analog and MCUs stand out. “Every single customer has to use analog as part of its system design. Our no. 1 position in analog gives us a unique position,” he added.

MCUs play a very important role in a huge number of areas — from consumer appliances, energy meters, lighting products etc. There is a huge customer base in India where very large application specific innovation has been happening.

In India, TI has set up a strong sales network across 14 locations, giving it a pan-India presence. Dr. Mitra added: “We want to tap the India market with sales support and applications support. You need to work hand in hand with the OEMs. We also need to get closer to our customers.” TI India supports both Indian and MNC OEMs.

“The amount of system designs being done by the MNC OEMs in India is pretty high. The third area — design houses — these OEMs are their customers. The fourth area belongs to the EMS players,” he said.

Today was virtually a walk into TI India’s ‘kitchen.’  The roundtable participants were shown demos of some really cool products and applications, especially the handheld pico projector, which also played 3D cinema!

The sessions were largely focused on analog, low power and energy efficiency, metering, solar PV/solar inverters, LEDs, medical electronics, etc. — all key areas of focus for the Indian electronics and semiconductor industries.

I will add bits from the other speakers at this event later. Stay tuned folks!

ST intros STM32L EnergyLite ultra-low-power MCUs for portable and very low power apps

STMicroelectronics' STM32L EnergyLite ultra-low-power MCUs.

STMicroelectronics' STM32L EnergyLite ultra-low-power MCUs.

STMicroelectronics recently launched the STM32L EnergyLite ultra-low-power MCUs. I caught up with Vinay Thapiyal, technical marketing manager, MCU’s, ST India, to learn more.

The highlights of this series of MCUs include a commitment for ultra-low power — the EnergyLite platform is common for 8-bit (STM8L) and 32-bit (STM32L) MCUs. Also, it is strong on pure energy efficiency, with high performance combined with ultra low power, i.e., high high energy saving.  Finally, the ultra low power member in STM32 portfolio enriches both the STM32 ultra-low-power EnergyLite platform and the STM32 portfolio.

According to Thapliyal, STMicroelectronics has been involved in the MCU market for a long time. Off late, it has started focusing on the STM32 — the ARM Cortex based MCU and the STM8 — for 8-bit family. “We have started converging our old families into these two domains,” he added.

The STM32F is the foundation of the STM32 family. STM32F is a family of low power MCUs based on the 32-bit ARM Cortex M3 architecture.

The STM8 is a family of MCUs based on ST’s propritetary atchitecture. The STM32L is STMicroelectronics’ ultra low power family mainly used for portable and very low power applications.

The ultra-low-power EnergyLite platform, featuring the STM32L and the STM8L is based on STMicroelectronics’ 130 nm ultra-low-leakage process technology. They share common technology, architecture and peripherals. The STM8, which was launched in 2009, has caught on very fast. It is a high performance, low cost MCU.

He added that STMicroelectronics started with 130nm technology, and low pin count and low flash on STM8, while higher memory and high pin count is available on the STM32. Read more…

Round-up 2009: Best of EDA, embedded systems and software, design trends

Friends, the next installment in this series on the round-up of 2009 lists my top posts across three specific fields that are very important within the semiconductor industry — electronic design automation (EDA), embedded systems and software, and some design trends. Here you go!

EDA

Synopsys on Discovery 2009, VCS2009 and CustomSIM

State of global semicon industry: Hanns Windele, Mentor

New routing tool likely to cover upcoming MCMM challenges: Hanns Windele, Mentor

Cadence’s focus — systems, low power, enterprise verification, mixed signal and advanced nodes

Zebu-Server — Enterprise-type emulator from EVE

State of the global EDA industry: Dr. Pradip Dutta, Synopsys

Mentor’s Wally Rhines on global EDA industry and challenges

Mentor’s Wally Rhines on EDA industry — II

Cadence’s Lip-Bu Tan on global semicon, EDA and Indian semicon industry

Indian EDA thought leaders can exploit opportunities from tech disruption!

EMBEDDED SYSTEMS & SOFTWARE

Top 10 embedded companies in India — By the way, this happens to be the most read article of the year!

NI LabView solves embedded and multicore problems!

Intel’s retail POS kiosk provides unique shopping experience

ISA Vision Summit 2009: Growing influence of embedded software on hardware world

MCUs are now shaping the embedded world!

Embedded electronics: Trends and opportunities in India!

Growth drivers for embedded electronics in India

DESIGN TRENDS

Microcontrollers unplugged! How to choose an MCU

Xilinx rolls out ISE Design Suite 11 for targeted design platforms!

TI’s 14-bit ADC unites speed and efficiency

ST/Freescale intro 32-bit MCUs for safety critical applications

Again, I am certain to have missed out some posts that you may have liked. If yes, please do point out. Also, it is not possible for me to select the top 10 articles for the year. If anyone of you can, I’d be very delighted.

My best wishes to you, your families and loved ones for a happy and prosperous 2010.

P.S.: The next two round-ups will be on solar photovoltaics and semiconductors. These will be added tomorrow, before I disappear for the year! 😉

ST/Freescale intro 32-bit MCUs for safety critical applications

Early this month, STMicroelectronics and Freescale Semiconductor introduced a new dual-core microcontroller (MCU) family aimed at functional safety applications for car electronics.

These 32-bit devices help engineers address the challenge of applying sophisticated safety concepts to comply with current and future safety standards. The dual-core MCU family also includes features that help engineers focus on application design and simplify the challenges of safety concept development and certification.

Based on the industry-leading 32-bit Power Architecture technology, the dual-core MCU family, part-numbered SPC56EL at ST and MPC564xL at Freescale, is ideal for a wide range of automotive safety applications including electric power steering for improved vehicle efficiency, active suspension for improved dynamics and ride performance, anti-lock braking systems and radar for adaptive cruise control.

Freescale/STMicroelectronics JDP
The Freescale/STMicroelectronics joint development program (JDP) is headquartered in Munich, Germany, and jointly managed by ST and Freescale.

The JDP is accelerating innovation and development of products for the automotive market. The JDP is developing 32-bit Power Architecture MCUs manufactured on 90nm technology for an array of automotive applications: a) powertrain, b) body, c) chassis and safety, and d) instrument cluster.

STMicroelectronics’ SK Yue, said: “We are developing 32-bit MCUs based on 90nm Power Architecture technology. One unique feature — it allows customer to use dual core or single core operation. The objective of this MCU is to help customers simplify design and to also reduce the overall system cost.

On the JDP, he added: “We will have more products coming out over a period of time. This JDP is targeted toward automotive products.”

Commenting on the automotive market today, he said that from June onward, the industry has been witnessing a gradual sign of recovery coming in the automotive market.

1 MB safety and chassis controller -- 32-bit MCU courtesy Freescale/STMicroelectronics joint development program (JDP)

1 MB safety and chassis controller -- 32-bit MCU courtesy Freescale/STMicroelectronics joint development program (JDP)

Automotive market challenges

There has been an increasing integration and system complexity. These include:

* Increasing electrification of the vehicle (replacing traditional mechanical systems).

* Mounting costs pressure leading to integration of more functionality in a single ECU.

* Subsequent increase in use of high-performance sensor systems has driven increased MCU performance needs.

There are also increasing safety expectations. Automotive system manufacturers need to guarantee the IEC61508 (SIL3) and ISO26262 (ASILD) system-safety capability. Also, a move from passive to active safety is increasing the number of safety functions distributed in many ECUs.

Finally, there is a continued demand for quality — in form of zero defects, by which, a 10x quality improvement is expected.

MCU family addresses market challenges

The MCU family offers exceptional integration and performance. These include: high-end 32-bit dual-issue Power Architecture cores, combined with comprehensive peripheral set in 90nm non-volatile-memory technology. It also provides a cost effective solution by reducing board size, chip count and logistics/support costs.

It also solves functional safety. The Functional Safety architecture has been specifically designed to support IEC61508 (SIL3) and ISO26262 (ASILD) safety standards. The architecture provides redundancy checking of all computational elements to help endure the operation of safety related tasks. The unique, dual mode of operation allows customers to choose how best to address their safety requirements without compromising on performance.

The MCU also offers best-in-class quality. It is design for quality, aiming for zero defects. The test and manufacture have been aligned to lifetime warranty needs.

The MCU family addresses the challenges of applying sophisticated safety concepts to meet future safety standards. Yue added, “There are two safety standards — we are following those guidelines.” These are the IEC61508 (SIL3) and ISO26262 (ASILD) system-safety capabilities.

The automotive industry is also targeting for zero defects. “Therefore, all suppliers in tier 1 and 2 need to come up with stringent manuyfaturing and testing process that ensures zero defects,” he said.

32-bit dual-issue, dual-core MCU family

Finally, why dual core? Yue said that the MCU helps customers to achieve to achieve safety and motor control. Hence, dual core will definitely help deliver results.

“In many automotive applications, especially in safety-related applications, we want to have redundancy for safety. In the lock-step mode, two cores run the same task simultaneously, and results are then compared to each other in every computation. If the results are not matched, it indicates that there are some problems.”

This MCU family definitely simplifies design. It uses a flexible, configurable architecture that addresses both lock-step and dual parallel operation modes on a single dual-core chip. Next, it complies with safety standards.

A redundant architecture provides a compelling solution for real-time applications that require compliance with the IEC61508 SIL3 and ISO26262 ASIL-D safety standards. It also lowers the systems cost.

Dual-core architecture reduces the need for component duplication at the system level, and lowers overall system costs.

Infineon on India's e-passport and semicon industry

If you have ever been a resident of Hong Kong, you’d know what an e-passport looks like! You would have even used it! For example, if you were crossing over into Shenzhen, China, from Lo Wu, which is on the borders of Luohu district within Hong Kong and the city of Shenzhen in Guangdong province, China, [having reached there via the KCR (Kowloon-Canton Railway)] — you can easily use your Hong Kong e-passport to get past the immigration point and enter China!

It is really easy! Simply drop your e-passport into the e-passport reader slot and place your finger on the fingerprint reader for it to scan and read. Once your e-passport comes out, move over to the other side to another e-passport reader, repeat the same exercise, and you’re done! All it takes is less than a minute!

All Indians could soon have e-passports!
Well, such an e-passport can become a reality in India soon! If you haven’t heard it, Infineon Technologies recently supplied contactless security microcontrollers (MCUs) for India’s electronic passport (e-passport) program! The Indian e-passport rollout started with Indian diplomats and officials being issued e-passports — around 30,000 to be issued in phase one. It is likely that by September 2009, the e-passports will be extended to the general public.

The rollout has started with the issuance of electronic passports to Indian diplomats and officials. It is expected that in this first phase, up to 30,000 electronic passports shall be issued. By September 2009, the program is likely to be expanded to include passports used by the general public. Today, around 6 million passports are being annually issued in India. I believe, the government of India has invited a new tender for interested stakeholders to bid for 20 million e-passports.

So, being a Hong Kong e-passport holder, I was interested in knowing whether the Indian version is as smart as that particular one? By the way, Hong Kong’s e-passport also doubles up as your Hong Kong ID (HKID) card. If you don’t have one, you simply cannot do business in Hong Kong! Your HKID number is unique and remains unchanged!

Dr. Rajiv Jain, Vice President and Managing Director, Infineon Technologies India Pvt Ltd, said that both Hong Kong and India are using the same product family from Infineon. “The security levels of both e-passports are based on the Common Criteria EAL 5+, the highest possible security certification for MCUs. In addition, both comply to ICAO requirements, the international standard for e-passports.”

Infineon’s SLE 66CLX800PE security MCU provides advanced performance and high execution speeds, and was specifically designed for use in electronic passports, identity cards, e-government cards and payment cards. Sounds very interesting!

Highlights of Infineon’s security MCU
The security MCU features a crypto-coprocessor and can operate at very high transaction speeds of up to 848kbits/s even if the elevated encryption and decryption operations have to be calculated.

The SLE 66CLX800PE offers all contactless proximity interfaces on a single chip: the ISO/IEC 14443 type B interface and type A interface, and both used for communication between electronics passports and the respective readers; and the ISO/IEC 18092 passive mode interface, which is used in transport and banking applications. The SLE 66CLX800PE features 80 kilobytes (kb) of EEPROM, 240kb of ROM, and 6kb of RAM.

The SLE 66PE contactless controller family, which includes the SLE 66CLX800PE, is certified according to Common Criteria EAL 5+ high (BSI-PP-0002 protection profile) security certification. Infineon’s security in MCUs used in e-passports builds on the underlying hardware-based integral security, with data encryption, memory firewall system and other security mechanisms to safeguard the privacy of data.

The SLE 66PE product family comprises a whole product portfolio designed for use in basic-security to high-security smart card systems, with the EEPROM sizes ranging from 4kb to144kb, and covering different applications including government ID, transportation and payment.

Infineon’s perception of Indian semiconductor industry
So much about the e-passport! I can’t wait to get my hands on one! Since I was in a discussion with Infineon, it naturally turned toward the Indian semiconductor industry and what needs to be done!

Dr. Jain said: “The Indian semiconductor industry has seen its share of successes and misses. The in-depth technical talent required for design and development is omni-present (TI, Intel, Infineon, Wipro, etc., to name a few). For example, we are doing critical R&D in the areas of automotive electronics, broadband, mobile communications and secured ID solutions at Infineon India, and the fact that it is one of the largest centres in Infineon’s global R&D network, is a testimony to India’s importance as the destination for cutting edge research. This has also led to creation of home-grown design houses offering services to the larger companies.

“We are also seeing in some small, but growing numbers, products and ideas for local markets. As the local markets evolve, so will the ability of these companies to deliver innovation for these local markets, which can then be taken globally.”

He added that an area of debate has been the need for semiconductor manufacturing in India. For example, having fabs, test and packaging plants, and EMS. “There have been government initiatives with a few successes. However, financial, tax-related and custom-related investment in these areas needs to come together and be centrally driven from a long-term perspective, as these institutions, which can provide a stable manufacturing base, need larger efforts to be successful.”

Hopefully, we will finally get to see some action on all of these areas post the Indian general elections due shortly.

PS: Just to let all of my friends know, I am no longer associated with either CIOL or its semiconductors web site.

MCUs are now shaping the embedded world!

As promised, here’s a discussion I had with STMicroelectronics (ST) on its new 8-bit microcontroller, the STM8S — the STM8S105 and STM8S207 MCUs for industrial and consumer applications. The discussion focused on how MCUs are now beginning to shape the embedded world.

Addressing this specific query, Patrice Hamard,8-bit Product Line Marketing Manager, STMicroelectronics, said that ST is reshaping the microcontroller with a solid offer on 8bit that has a strong overlap with STM32 in terms of feature and price. “Therefore, we are going to cover the need for embedded functions with only two architectures. Compared to the previous segmentations (8-, 16- and 32-bit), we are changing it to become 8- and 32-bit only,” he clarified.

On the STM8S, Hamard said that the key application areas addressed by the MCU are industrial and appliances in consistent with the robustness and the reliability. He said: “The STM8S family is supporting 5V as well as 3V, thereby making it ideal for the platform evolution as well as a good offer for the consumer and mass market. The cost advantage given with the fine lithography also allows us to propose this family to key customers in PC peripherals and consumer applications.”

Rich feature set an imperative in MCUs
Rich feature set is an imperative in the MCU market. How is the STM8S meeting this requirement?

According to him, the feature set is driven by the need to reduce the bill of materials (BoM). The robustness allows simple design and board layout with less filtering. The clock controller gives low noise emission figure, thereby reducing the need for shielding. The precise clock allows the suppression of the external resonator. The embedded true E²Data suppresses the need for additional E²PROM. Safe reset (no grey area) makes the reset system safer suppressing the need for external reset circuit.

The clock system, as well as the two independent watchdogs will contribute to pass safety regulations together with ST’s class B libraries. All communications peripherals are available as well — (U(S)ART, I²C, SPI, CAN, LIN), advanced 16-bit timers and timebase, fast and precise 10-bit ADC.

Finally, the 8-bit core is one of the most efficient with 20MIPS at 24MHz. Built around the 8-bit data path, the micro has 16bit registers and 32bit memory memory width.

So, how does the STM8 deliver high performance with excellent code compactness?

Hamard said that thanks to the new CISC instruction set designed in collaboration with ST’s C compiler partners, the compactness has been significantly improved. The Harvard architecture with its three-stage pipeline allows to reach up to 20MIPs @ 24MHz.

ST is offering family demonstration boards and instrument cluster reference designs as well. In fact, there are currently solutions available in ST with the STM8S/128-EVAL, as well as with third parties like raisonance with the REVA KIT. Many reference designs are complete or in progress demonstrating motor control (sensorless brushless DC motors), power management, smart card protocol, capacitive sensing, etc.

Demand for low-power MCUs
According to Hamard, the trend of low power is coming from the increase of the application base on battery in consumer and personal care, combined with a strong demand for power meters (electricity, water and gas). Energy saving is important and electronics can contribute a great deal to reduce the overall energy consumption.

“The STM8S is not specifically aiming low power applications even though the features of the family are good for many low power devices. It is in our plan to introduce later this year a dedicated family to address low voltage/low power arena,” he added.

Why 8-bit?
Considering that there are 8- vs. 16- vs. 32- bit MCUs, and also that affordable prices are perhaps the reason that the Asian region is witnessing a migration to 16-bit architectures. In this scenario, why 8-bit?

Hamard said: “Everything depends on what we consider to be “affordable” and who we are talking to. For large quantity and simple functions, affordability is between $0.20 cents to $0.50 cents. By construction, a 16-bit device cannot be as effective as an 8-bit product. We even believe that the microcontroller prices will decrease and address applications served with few discrete devices. The main reason is the consistency of architecture.

“The construction of the 32- and 16- are very similar, especially with the new generation of ARM-based products. The only reason to go from 8- to 16-bit is for performance improvement. We say that our 32-bit portfolio is already overlapping the 8-bit segment in performance and in price, leaving no room for the third core structure.

“Taking a closer look at our portfolio, you will realize that our 32-bit is also providing 16-bit instruction set, and our 8-bit is built with 16-bit register, 24-bit memory address bus, etc.”

ST's 8-bit MCUs make efficient use of technology

STMicroelectronics (ST) recently introduced the new 8-bit microcontroller, the STM8S. This new MCU is said to be robust and reliable, and price competitive with system cost integration. Some other features include
• Performance up to 20MIPs @ 24Mhz;
• Excellent code density;
• Leading edge embedded Flash technology with true embedded E²Data; and
• Embedded debug function with low-cost development tools.

In fact, the company announced the general availability of the STM8S105 and STM8S207 MCUs for industrial and consumer applications. Key features of the new devices include high-performance 8-bit architecture, modular peripherals and pin-compatible packages to raise performance, scalability and value for current 8-bit and 16-bit applications.

The STM8S platform enables new generations of 8-bit MCUs, offering up to 20 MIPS CPU capability and 2.95-5.5V operation to help legacy 8-bit systems transition to lower supply voltages. Its 130nm embedded non-volatile memory is among the most advanced technologies currently in use with 8-bit MCUs, and provides true EEPROM data-write with 300,000-cycle durability.

So, what would be typical applications addressed by ST’s STM8S? These would be — home appliances, HVAC, user interfaces, factory automation, motor control, sensors, lighting, e-bikes, circuit breakers, personal care, rechargeable battery operated devices, toys and game accessories, power supplies and power management, and power tools.

The microcontroller boasts advanced architecture for performance. These include:
• High performance core:
– Advanced Harvard and CISC architecture.
– New arithmetic instructions (yXx,y/x).
– 20MIPs peak @ 24Mhz Fcpu.

• Innovative architecture:
– 128 kB linear address space, no paging.
– 16-bit index registers.
– Internal 32-bit memory interface and three-stage pipeline.
– Advanced clock controller for better power consumption and noise control.

The STM8 is said to deliver high performance with excellent code compactness. ST has efficiently made use of technology to break price barriers. According to the company, technology is driving 8-bit evolution, and breakthrough has been achieved with 130nm lithography. The MCU also makes use of E² non-volatile memory, analog and digital peripherals.

STM8S – software requirements for safety
• Immune against EMS, strong against Latchup or ESD.
• Low noise emission.
• Embedded system supporting IEC 60335 class B compliance
– Self test
– Build-in checks (check-sum, ECC..)
– Illegal op. codes
– Interrupt handling
– Clock failure detection, recovery
– Watchdogs (Time monitoring, program flow)

In summary, the STM8 MCU is a high performance 20 MIPs core. Features include lower system cost, and friendly IDE with free software suite.

As for the touch sensing software suite, ST is offering complete NRE/royalty-free source code solution to enable 8-bit STM8 MCU platforms for capacitive touch sensing capability. You can detect the capacitive human touch by controlling the charge/discharge timing cycle of an RC network formed by a single resistor and the electrode capacitance Cx.

The suite has multi-function capability to combine capacitive sensing function to the traditional MCU features (communication, LED control, beeper, LCD control). It delivers with hardware development platform and diagnostic tools to ease the design process.

I will be speaking with ST even further on how MCUs are shaping the embedded world. Stay tuned!