Archive

Archive for the ‘solar manufacturers’ Category

Dr. Robert Castellano on how to make solar a ‘hot’ sector again – 2

Friends, this is the concluding part of my conversation with  Dr. Robert N. Castellano, president of  The Information Network, based in New Tripoli, USA.
The question of adding new, additional solar capacity will always arise. Is t certain that no new additional capacity will be brought on board in 2009? Dr. Castellano said: “Actually I said 2010. Solar manufacturers are already losing money this year and the capacity utilization is 27.9 percent. Also, the days of inventory are currently 122, up from 71 days in 2008. If they continue to add new capacity, things will only worsen, exasperating the recession.”
Dr. Robert N. Castellano, president, The Information Network

Dr. Robert N. Castellano, president, The Information Network

Friends, this is the concluding part of my conversation with  Dr. Robert N. Castellano, president of  The Information Network, based in New Tripoli, USA.

The question of adding new, additional solar capacity will always arise. Is it the certain that no new additional capacity will be brought on board in 2009?

Dr. Castellano noted: “Actually I said 2010. Solar manufacturers are already losing money this year and the capacity utilization is 27.9 percent. Also, the days of inventory are currently 122, up from 71 days in 2008. If they continue to add new capacity, things will only worsen, exasperating the recession.”

What lessons for India?
Turning our attention to India, which has lately been witnessing a lot of talks of building new capacity. According to Dr. Castellano, now is a good time to talk, as a plant will take at least a year to get into full production. By that time, prices should be stabilized and increase.

What then are the lessons to learn from all of this for the Indian solar PV industry?

He added: “What has to be weighed is the cost of making the solar panels in India versus buying the outside the country. It can take several years for a plant to be profitable. If the venture was established from money from India’s government through subsidies, it can lessen the impact of potential losses, while the plants ramp and selling prices move up to a level where production becomes profitable.”

I hope this valuable piece of advice is noted by the existing players or those looking to entering the solar photovoltaics segment in India.

Bring solar production cost per watt down
Dr. Castellano had mentioned about First Solar bringing production costs down to $0.93 per watt. How many of the others are capable of matching or bettering this?

He said, for that matter, Oerlikon, expects that its lines will deliver a cost of $0.70 cents per watt by the end of 2010 and has achieved an initial conversion efficiency of 11 percent, which comes out to about 9.5 percent of stabilized efficiency.

How can manufacturers differentiate their solar products?
Another query has been, how should solar manufacturers differentiate their products and how can they do it cheaply?

Certainly, there are new avenues of manufacturing, such as CdTe from First Solar, CIGS from half a dozen manufacturers, multi-junction cells from companies such as Uni-Solar, and building integrated photovoltaics (BIPV) from an increasing number of manufacturers, advised Dr. Castellano.

He said: “These technologies differentiate the companies’ products, but the proportion of wattage manufactured, while growing, is small compared to the majority of solar panels sold using traditional methods of production, i.e., a thin film on a glass substrate.

“Long life and low cost of ownership are of paramount importance if solar is to grow, particularly, if there is to be a large acceptance at the residential level. Manufacturing can introduce defects in solar cells that can result in low electron mobility (EM), electron traps and photo-degradation from UV light. These issues affect the efficiency and lifetime of solar cells and the importance of measuring electron mobility at the wafer and cell stage.

“The lifetime of minority carriers has been widely identified to be the key material parameter determining the conversion efficiency of pn-junctions in silicon solar cells. Defects in the crystal lattice reduce the charge carrier lifetime and thus limit the performance of the solar cells. Another major efficiency loss is due to impurities in the cell. These can be foreign atoms or molecules in the crystal lattice (including the dopant atoms), and provide sites where electrons and holes can recombine, thereby reducing the number of charged particles available to create an electrical current.

“Lehighton Electronics (Lehighton, PA) is an example of a company that has developed a variety of tools to test and measure solar wafers. One tool can measure sheet resistance and resistivity to see if there is any subsurface damage. Another system can measure minority carrier lifetimes, while a third model can find traps in solar wafers.” Read more…

Top-10 solar cell suppliers in 2009: iSuppli

September 6, 2009 9 comments

Friends, I recently received this list from iSuppli and hope to be speaking with the company in more detail. In the meantime, the study is reproduced here for the benefit of readers. May I also thank iSuppli and Jon Cassell.

First Solar to produce twice as much as leading crystalline solar module suppliers

EL SEGUNDO, USA: Leveraging its low-cost thin-film process, US-based First Solar Inc. is set to surpass its crystalline competitors to become the world’s largest producer of photovoltaic (PV) cells in 2009, according to iSuppli Corp.

First Solar in 2009 is set to produce 1,100 Megawatts (MW) worth of solar cells, more than double the 503MW it made in 2008. This will give First Solar nearly twice as much production of total solar cells as its nearest competitor, Suntech Power Holdings Co. Ltd. As iSuppli noted in an Aug. 10 release, SunTech in 2009 is set to become the leader of the crystalline segment, which is a subset of the total solar cell market.

“First Solar is leveraging its cost leadership to achieve market-share leadership in the global PV solar cell business,” said Dr. Henning Wicht, senior director and principal analyst for iSuppli. “The company’s proprietary thin-film process is giving it an edge over the competition amid challenging solar market conditions.”

The figure presents iSuppli’s forecasted worldwide market share for all types of solar cells in 2009.

iSuppli:Forecast of Top-10 Suppliers of Solar Cells in 2009 (Ranking by Production in Megawatts (MW))

iSuppli:Forecast of Top-10 Suppliers of Solar Cells in 2009 (Ranking by Production in Megawatts (MW))

iSuppli:Forecast of Top-10 Suppliers of Solar Cells in 2009 (Ranking by Production in Megawatts (MW))

Source: iSuppli, USA, Sept. 2009

“First Solar sells its products at very competitive prices, always undercutting crystalline cells,” Wicht said. “With its capability to produce cells at a cost of 89 cents per watt in the second quarter, First Solar is generating stable operating margins, while its competitors are struggling to stay profitable. Despite global oversupply of PV modules, First Solar is continuing to expand and is able to sell nearly all of its finished goods.”

Beyond low-cost production, First Solar’s success is also being driven by its well-established sales channels in Europe and its own installations for US utility projects.

First Solar will be the only company among the Top-4 solar cell suppliers able to gain market share in 2009, iSuppli predicts. The company’s portion of global solar cell MW production will rise to 12.8 percent in 2009, up from 7.5 percent in 2008. No.-2 SunTech, No.-3 Sharp and No.-4 Q-Cells — all will suffer contractions in total solar cell market share.

First Solar also holds the lowest levels of inventory in the global solar cell industry. Because of this, iSuppli expects the company to actually sell all of its production in 2009, rather than stockpiling it. With inventories throughout the PV supply chain soaring, this give First Solar a significant competitive advantage.

With 3.92GW worth of solar capacity set to be installed in 2009, First Solar’s cells will account for as much as 28 percent of the total, according to iSuppli. The company’s share will be even higher in ground installations and large rooftops, where its products find the strongest acceptance. Its share will be lower in other types of installations, such as small rooftops.

Thin-film represents a new generation of solar cell technology that is gaining acceptance worldwide. Traditional solar cells have employed crystalline material, which is relatively efficient at converting light into electricity, but also more expensive relative to thin-film. In addition to SunTech, crystalline solar-cell suppliers include Q-Cells, Sharp, Yingli and JA Solar.

In contrast, thin-film employs slim layers of materials including cadmium, tellurium, copper, amorphous, and microcrystalline silicon.

Because of its cost advantage, thin film will grow to account for 34.5 percent of worldwide solar production in terms of MW in 2013, up from 14.2 percent in 2008.

Despite the strong rise of thin-films, iSuppli doesn’t believe that the technology will surpass crystalline in the foreseeable future.

“The rise of thin-film is due to the success of First Solar and its unique thin film process,” Wicht said. “There’s no new First Solar yet on the horizon. With only one supplier, thin film’s progress will be limited.”

First Solar employs a patented process using cadmium telluride (CdTe).

I certainly hope to get into a further discussion with Dr. Henning Wicht on this list, and with him and Stefan de Haan on the top 10/20 thin film module producers, as well as crystalline cell manufacturers. Stay tuned, folks!

EL SEGUNDO, USA: Leveraging its low-cost thin-film process, US-based First Solar Inc. is set to surpass its crystalline competitors to become the world’s largest producer of photovoltaic (PV) cells in 2009, according to iSuppli Corp.
First Solar in 2009 is set to produce 1,100 Megawatts (MW) worth of solar cells, more than double the 503MW it made in 2008. This will give First Solar nearly twice as much production of total solar cells as its nearest competitor, Suntech Power Holdings Co. Ltd. As iSuppli noted in an Aug. 10 release, SunTech in 2009 is set to become the leader of the crystalline segment, which is a subset of the total solar cell market.
“First Solar is leveraging its cost leadership to achieve market-share leadership in the global PV solar cell business,” said Dr. Henning Wicht, senior director and principal analyst for iSuppli. “The company’s proprietary thin-film process is giving it an edge over the competition amid challenging solar market conditions.”
The figure presents iSuppli’s forecasted worldwide market share for all types of solar cells in 2009.
iSuppli:Forecast of Top-10 Suppliers of Solar Cells in 2009 (Ranking by Production in Megawatts (MW))

Indian government, solar industry interact on MNRE's solar PV program

September 1, 2009 1 comment
NEW DELHI, INDIA: The India semiconductor Association (ISA), along with the Ministry of New and Renewable Energy (MNRE), Government of India and IREDA, kicked off a one-day conference on the promotion of the solar photovoltaics programs of the Government of India.
PS: The partnership between the MNRE and the ISA is very stroing. This workshop first in a series of workshops across the country. We hope you get the value add. Look forward to your feedback, so we can improve on our future programs.
Naidu: Good to be part of a new revolution taking place in India. We’ve seen the success of the IT industry and the semicon design sector. MNRE organizing an industry interaction is a step in the right direction.
Installed cap is more than 400-500MW capacity, but about 90 percent of that is exported. We have all the faetures of being a successful solar country. Germany — 4 percent of its overall capacity has been happening out of solar. Lot of emphasis also happening in the USA and Chima.
Government of India has set an ambitious target of reaching 20GW by 2020. A lot of things need to be done in the country, and by the Indian solar PV industry. We are also looking at an equal amount of participation from academia, so we can look at ways to reduce costs and improve efficiency of solar PV. ISA created the roadmap for FabCity in Hyderabad. We are also organizing a solar conference in Hyderabad. Solar is also a prominent area, where ISA has been working.
Bisht: Solar PV is going to play a big role in assuring green tech in the country. 14th Nov date set for Solar Mission Program. MNRE’s focus has been at decentralized programs, Today, we’ve 75MW of systems across the country. We’ve significant targets for SPV systems. Ministry has now tried to make new schemes. We will present those, and listen to your views. We’ll compile all that and revert to you, so we can march together.
Majumdar: The reason why we are here is clear — what exists on MNRE website — potential for renewable energy. The potential for solar is massive! When solar PV started about 15 years ago, we had small mfrs starting in garages, and have now grown to become very large.
It gives us a lot of hope that things can be done here as well. Any new tech, to begin with, expensive. Therefore, it is the prerogative of the rich to adopt it. We all hope, we’ll have volumes and technologies that can be replicated here.
We look at solar from two aspects — offgrid and ongrid. We’d like to see what kind of demand can we convert in the offgrid applications. In the subsequent session, we’ll see the steps the ministry has taken. The policy made, has been made in the best interests of the industry. We would like to get your feedback and see how best to get the market going.
Gauri Singh — Purpose is to give a loud and clear message to ind that we’d like to wrok with you as partners. A large portion of the solar mission target will come from grid connected solar power. But the offgrid opportunity is also huge.
We’ve tried to open up our policy slightly — and take the whole proces forward by taking inputs from you — and open the policy up for suggestions. One part of the thing — we already have large manufacturers who can give us modules. The other part — is our policy encouraging innovation.
Now the time is ripe where we can do only broad tech specs, etc. but leave the innovation and config of offgrid solns to the industry, and make it an enabling flavor.
We are also working to see if we can get IREDA into a refinance operation with banks. We do have scheme in place, where if anyone wants to wrok with a bank – where a lot of incentives are also available to the banks. We’d like to see incentives given to mfrs. We also need to put out a third party monitoring system.
India’s Ministry of New and Renewable Energy (MNRE) had recently announced a unified solar photovoltaic (SPV) program to promote the use of decentralised SPV systems for various applications in rural/ urban areas and SPV roof top systems for diesel saving in urban areas.

Poornima Shenoy of ISA welcoming delegates. On the dias (L-R): Dr. Dr B.M.S. Bist, Ms Gauri Singh, B.V. Naidu, Debashish Majumdar and Rajiv Jain

Poornima Shenoy of ISA welcoming delegates. On the dias (L-R): Dr. B.M.S. Bist, Ms Gauri Singh, B.V. Naidu, Debashish Majumdar and Rajiv Jain

To promote this program, the MNRE organized a one-day seminar today, in New Delhi, along with the India Semiconductor Association (ISA),  and the Indian Renewable Energy Development Agency Ltd (IREDA),  to share the modalities for the implementation of the program with the concerned stakeholders such as manufacturers  of solar PV modules and equipment, system integrators, service providers, consultants, banks and financial institutions, and reputed NGOs. A government-industry interaction on the MNRE’s program was also intiated during the event.

Huge opportunity in off-grid applications
Ms Gauri Singh, IAS, joint secretary, MNRE said that the purpose of this interaction between the government and the industry is to give a loud and clear message to Indian solar photovoltaics industry that “we would like to work with you as partners.”

She added: “A large portion of the solar mission target will come from grid connected solar power. However, the off-grid opportunity is also huge. We have tried to open up our policy slightly — and take the whole process forward by taking inputs from you — and open up the policy for suggestions. One part of the scenario is — we already have large manufacturers who can provide us solar modules. The other part — is our policy encouraging innovation.

“Now, the time is ripe where we can do only the broad technical specifications, etc., but leave the innovation and configuration of the off-grid solutions to the industry, and make it an enabling flavor.” She also called for a need to put out a third party monitoring system.

She further added that the MNRE was also working to see whether it could get the IREDA into a refinance operation with banks.

There are schemes in place, where if anyone wants to work with a bank, a lot of incentives are available to the banks. Now, the ministry would like to see incentives being given to the manufacturers.

Industry-government interaction step in right direction
Earlier, welcoming the delegates, Poornima Shenoy, president, ISA, stressed on the very strong partnership between the MNRE and the ISA. She added that this workshop was a first in a series of such workshops that will be held across the country. She requested the delegates to add as much value as possible to this edition, adding, “We look forward to your feedback, so that we can improve on our future programs.”

B.V. Naidu, chairman, ISA said that it was good to be part of a new revolution taking place in India. He added: “We have seen the success of the Indian IT industry and the Indian semiconductor design sector. That the MNRE is organizing an industry interaction on solar photovoltaics is a step in the right direction.” Naidu noted that India has all the features required for becoming a successful solar country.

Incidentally, the current installed capacity of solar PV  is said to be over 400-500MW, but about 90 percent of that capacity is exported. As a case, in Germany, 4 percent of the overall power generation capacity has been generated out of solar. A lot of emphasis on solar PV also been happening in the USA and Chima.

Naidu added: “The Government of India has set an ambitious target of reaching 20GW by 2020. A lot of things need to be done in the country, and by the Indian solar PV industry. We are also looking at an equal amount of participation from the academia, so that we can look at ways of reducing costs and improving the efficiency of solar PV.

The ISA has already created the roadmap for the FabCity in Hyderabad. It is also organizing a solar conference in Hyderabad this November.

Solar to assure green technology in India
Dr B.M.S. Bist, Advisor, MNRE, said that solar PV is going to play a big role in assuring green technology in the country. A date of Nov. 14 has been set for Solar Mission Program, as already mentioned.

The MNRE’s focus has been at decentralized programs. Today, there are said to be 75MW of systems across the country. Dr. Bist added that significant targets have been set for the SPV systems. The ministry has now tried to make new schemes. These will be presented to the delegates and their views welcomed. Those views will be compiled and the ministry will revert to the industry, so both of them can march together.

A view of the government-industry interaction. (L-R): D. Majumdar, Dr. Dr B.M.S. Bist, Dr. A. Raza, BV Rao and AK Varshney

A view of the government-industry interaction. (L-R): D. Majumdar, Dr. B.M.S. Bist, Dr. A. Raza, B.V. Rao and AK Varshney.

Massive potential for solar PV in India
Addressing the delegates, Debashish Majumdar, chairman and managing director, IREDA, said the reason for the gathering today was very clear — what exists on the MNRE website is potential for renewable energy. However, it does not really highlight the  potential for solar PV, which is massive!

He added: “When solar PV started about 15 years ago in India, we had small manufacturers starting in garages, etc., and who have now grown to become very large companies. It gives us a lot of hope that things can be done very well here as well. Any new technology, to begin with, is expensive. Therefore, it is the prerogative of the rich to adopt it. We all hope that we will have the volumes and the technologies that can be replicated in India.

“We look at solar from two aspects — off-grid and on-grid. We would like to see what kind of demand can we convert in the off-grid applications. In the subsequent session, we will see the steps that the ministry has taken. The policy has been made keeping the best interests of the industry. We would like to get your feedback and see how best to get the market going.”

This is indeed, an honest attempt on part of the MNRE to work closely with the industry. Hopefully, everything will go well, following this interaction as it will sow the right seeds toward reaping a full harvest — in shape of achieving the very ambitious target of the government of India’s national solar mission plan!

There were presentations on the following topics as well:

* Details of the solar PV off-grid program (rooftop systems) — Dr. AK Varshney, MNRE
* Details of the solar PV off-grid program (other applications) — Dr. A. Raza, MNRE
* Financing of IREDA schemes for solar — BV Rao, IREDA

These presentations were followed by a marathon discussion between the MNRE and IREDA officials on behalf of the government of India and the members of the Indian solar photovoltaics industry.

Dr. Robert Castellano on how to make solar a 'hot' sector again – 1

Last week, I was very fortunate enough to be able to get into a conversation with Dr. Robert N. Castellano, president of  The Information Network, based in New Tripoli, USA. It all started with a column, which he writes regularly in “The Street.” One of the recent colums of Dr. Castellano touched upon –- What could make solar hot again?
This first part will touch upon issues such as six reasons for cloudy solar skies and how to rectify the current oversupply situation in solar cell manufacturing, status of a-Si solar cell makers, crystalline vs. thin film capacity, and impact of prices.
<span style=”font-weight:bold;”>How to rectify the solar cell oversupply?</span>
As I’d asked iSuppli too, in one of my recent posts, I also quizzed Dr. Castellano on whether the previously committed capacity expansions have caused solar cell manufacturing oversupply? Also, why had this happened and how could this be corrected?
He said: “The problem will rectify itself when demand catches up with supply, which will take several years.  Until then, suppliers are faced with lower prices and margins. I was the first to point out on March 5 2008, in my blog on Seeking Alpha in an article entitled “Contradictions in the Solar Industry” that “The solar industry is faced with a huge oversupply of solar panels planned for production in 2008, but no one seems to notice… or care. Shares in many solar companies such as Evergreen Solar), First Solar  SunPower, and Suntech Power have surged with the booming solar market.”
<span style=”font-weight:bold;”>Six reasons for cloudy solar skies</span>
He added: “On November 18, 2008, in another blog on Seeking Alpha entitled “Six Reasons for Cloudy Skies on the Solar Energy Industry”  that the problems in the solar industry were the result of the following:
1. With oil at $60 a barrel, who cares about alternative energy? It is a short sighted view, but with the credit market crunch, who can get a loan to build solar plants anyway?”
2. The high price of oil in the past year was a catalyst for the development in other alternative energy sources, and not just solar! Advances in wind, geothermal and hydropower energy are reducing the cost of wind power to a point at which it is becoming competitive with traditional energy sources. Nuclear power plants — smaller than a garden shed and able to power 20,000 homes — will be on sale within five years, say scientists at Los Alamos, the US government laboratory, which developed the first atomic bomb. Among these alternative energy sources, hydropower and nuclear have the lowest carbon footprints (carbon dioxide produced during operation).
3. Spain, a huge buyer of solar, reduced its incentive program to aid buyers in 2009. In California, a seemingly green state, Prop. 7 was defeated in the November election with a whopping 65 percent of the voters saying NO. One reason: electricity consumers would pay 10 percent above the market rates for renewable power forever.
4. The spot market price of six-inch solar-grade wafers have fallen to $9 from a high of $12.50 in September. This bodes poorly for thin film makers and equipment suppliers. The thin film solar panel market and hence, the equipment market grew strongly because of the shortage of polysilicon. Now that polysilicon is abundant and lower priced, why make thin film panels with 8 percent efficiency when you get 16+ percent efficiency with silicon wafers?
5. “Utilization is at only 56 percent. Our analysis of 103 solar manufacturers shows that panel production capacity in 2009 will be 15 GW whereas only 8.3 GW will be sold.
6. The dollar has appreciated strongly against the euro by nearly 25 percent. Germany is the world’s largest PV market. US solar companies have had to adjust selling prices to generate sales, reducing profit margins.”
<span style=”font-weight:bold;”>Have companies been overlooking inventory problems?</span>
In this context, weren’t the solar companies doing enough to check all of these during the downturn of Q4-08? Even the 71 days to 122 days excess supply or inventory is huge!
Dr. Castellano said: “The solar companies were benefiting from the low price of polysilicon as a result of excess inventory in that sector. They were renegotiating contract prices with the poly suppliers and dropping prices. With money in place, they continued to build capacity well into 2009.  All the factors discussed above took everyone by surprise (witness the stock market crash) and the recession has lasted much longer than initially forecast.
<span style=”font-weight:bold;”>Where does this place a-Si solar cell makers?</span>
How is all of this potentially setting the stage for the failure of multiple cell manufacturers, particularly those pursuing a-Si thin film solar cells?
He added that thin film cells are still less expensive to make and companies are working to improve their efficiency.  Also, they appear to work at stated efficiency under lower incident light conditions.
“The issue is the economics in a solar farm where they are installed. The installation price is the same as a polycrystalline panel. Since the efficiency is lower and it takes more panels to reach the same wattage as polycrystalline, it also takes more hook-ups and frames during installation.
“If the panels move, there is another factor in the motors to move them. However, the production cost is lower than the polycrystalline panels. Oerlikon, expects its lines will deliver a cost of 70 cents per watt by the end of 2010 and has achieved an initial conversion efficiency of 11 percent, which comes out to about 9.5 percent of stabilized efficiency.”
<span style=”font-weight:bold;”>Crystalline vs. thin film capacity</span>
There is still a huge amount of solar cell manufacturing capacity in crystalline silicon solar cell, rather than thin film. Are there any chances of that starting to change any time soon?
Dr. Castellano said: “Until last year, Germany had been the world’s largest solar market thanks to its feed-in tariffs, which require utilities to buy all the solar energy produced at premium, government-set prices. As a result, analysts now expect Germany, which doesn’t have an annual cap like the one in Spain, to become the biggest market again in 2009.Germany installed 1.35 gigawatts of solar energy systems in 2008, and it could add another 1.5 gigawatts in 2009.
“Spain took the lead last year, but the government has since reduced the subsidies and capped the amount of energy that could be sold under the subsidy program. The financial market crisis has made it difficult for developers to line up financing for solar power projects. Spain, which added a few gigawatts of solar in 2008 alone, now has a 500-megawatt cap for 2009. All of these forces have led to an oversupply of silicon panels.
“As governments — Germany and Spain were a driving force – in the solar industry’s run-up, they were a factor in the downturn. Once the recession is over and liquidity returns, they will mitigate the overcapacity, particularly as prices are so low and there is pent-up demand for new installations.”
<span style=”font-weight:bold;”>Impact of Q4 on overall prices and industry</span>
Another aspect worth examining is the overall impact of this (Q4) on overall prices and the industry.
Dr. Castellano said that silicon used to sell for more than $300 per kilogram on the spot market and $150 per kilogram for long-term contracts a few years ago. Silicon prices have since fallen significantly over the past year. In fact, the long-term contract price has dropped about 50 percent, close to the spot market price of $67 per kilogram, or about $0.50 per watt.
“Polysilicon panels are selling at $2.25 to $2.50 per watt from $4.17 in Q2 2008. We expect prices to decline further throughout the remainder of the year,” he noted.
In part 2 of this conversation, I will be discussing additional capacity in solar, new capacity in India, and of course, lessons to learn for the Indian solar industry. Watch this space, folks!
Dr. Robert N. Castellano, president, The Information Network

Dr. Robert N. Castellano, president, The Information Network

Last week, I was very fortunate enough to be able to get into a conversation with Dr. Robert N. Castellano, president of  The Information Network, based in New Tripoli, USA. It all started with a column, which he writes regularly in “The Street.” One of the recent colums of Dr. Castellano touched upon –- What could make solar hot again?

This first part of our conversation will touch upon industry issues such as — six reasons for cloudy solar skies and how to rectify the current oversupply situation in solar cell manufacturing, status of a-Si solar cell makers, crystalline vs. thin film capacity, and impact of prices.

How to rectify the solar cell oversupply?
Since I’d asked iSuppli too, in one of my recent posts, I also quizzed Dr. Castellano on whether the previously committed capacity expansions have caused solar cell manufacturing oversupply? Also, why had this happened and how could this be corrected?

He said: “The problem will rectify itself when demand catches up with supply, which will take several years.  Until then, suppliers are faced with lower prices and margins. I was the first to point out on March 5 2008, in my blog on Seeking Alpha in an article entitled “Contradictions in the Solar Industry” that “The solar industry is faced with a huge oversupply of solar panels planned for production in 2008, but no one seems to notice… or care. Shares in many solar companies such as Evergreen Solar), First Solar  SunPower, and Suntech Power have surged with the booming solar market.”

Six reasons for cloudy solar skies

He added: “On November 18, 2008, in another blog on Seeking Alpha entitled “Six Reasons for Cloudy Skies on the Solar Energy Industry”  that the problems in the solar industry were the result of the following:

1.
With oil at $60 a barrel, who cares about alternative energy? It is a short sighted view, but with the credit market crunch, who can get a loan to build solar plants anyway?”
2. The high price of oil in the past year was a catalyst for the development in other alternative energy sources, and not just solar! Advances in wind, geothermal and hydropower energy are reducing the cost of wind power to a point at which it is becoming competitive with traditional energy sources. Nuclear power plants — smaller than a garden shed and able to power 20,000 homes — will be on sale within five years, say scientists at Los Alamos, the US government laboratory, which developed the first atomic bomb. Among these alternative energy sources, hydropower and nuclear have the lowest carbon footprints (carbon dioxide produced during operation).
3. Spain, a huge buyer of solar, reduced its incentive program to aid buyers in 2009. In California, a seemingly green state, Prop. 7 was defeated in the November election with a whopping 65 percent of the voters saying NO. One reason: electricity consumers would pay 10 percent above the market rates for renewable power forever.
4. The spot market price of six-inch solar-grade wafers have fallen to $9 from a high of $12.50 in September. This bodes poorly for thin film makers and equipment suppliers. The thin film solar panel market and hence, the equipment market grew strongly because of the shortage of polysilicon. Now that polysilicon is abundant and lower priced, why make thin film panels with 8 percent efficiency when you get 16+ percent efficiency with silicon wafers?
5. “Utilization is at only 56 percent. Our analysis of 103 solar manufacturers shows that panel production capacity in 2009 will be 15 GW whereas only 8.3 GW will be sold.
6. The dollar has appreciated strongly against the euro by nearly 25 percent. Germany is the world’s largest PV market. US solar companies have had to adjust selling prices to generate sales, reducing profit margins.”

Have companies been overlooking inventory problems?
In this context, weren’t the solar companies doing enough to check all of these during the downturn of Q4-08? Even the 71 days to 122 days excess supply or inventory is huge!

Dr. Castellano said: “The solar companies were benefiting from the low price of polysilicon as a result of excess inventory in that sector. They were renegotiating contract prices with the poly suppliers and dropping prices. With money in place, they continued to build capacity well into 2009.  All the factors discussed above took everyone by surprise (witness the stock market crash) and the recession has lasted much longer than initially forecast.

Where does this place a-Si solar cell makers?

How is all of this potentially setting the stage for the failure of multiple cell manufacturers, particularly those pursuing a-Si thin film solar cells?
He added that thin film cells are still less expensive to make and companies are working to improve their efficiency.  Also, they appear to work at stated efficiency under lower incident light conditions.

“The issue is the economics in a solar farm where they are installed. The installation price is the same as a polycrystalline panel. Since the efficiency is lower and it takes more panels to reach the same wattage as polycrystalline, it also takes more hook-ups and frames during installation.

“If the panels move, there is another factor in the motors to move them. However, the production cost is lower than the polycrystalline panels. Oerlikon, expects its lines will deliver a cost of 70 cents per watt by the end of 2010 and has achieved an initial conversion efficiency of 11 percent, which comes out to about 9.5 percent of stabilized efficiency.”

Crystalline vs. thin film capacity

There is still a huge amount of solar cell manufacturing capacity in crystalline silicon solar cell, rather than thin film. Are there any chances of that starting to change any time soon?

Dr. Castellano said: “Until last year, Germany had been the world’s largest solar market thanks to its feed-in tariffs, which require utilities to buy all the solar energy produced at premium, government-set prices. As a result, analysts now expect Germany, which doesn’t have an annual cap like the one in Spain, to become the biggest market again in 2009.Germany installed 1.35 gigawatts of solar energy systems in 2008, and it could add another 1.5 gigawatts in 2009.

“Spain took the lead last year, but the government has since reduced the subsidies and capped the amount of energy that could be sold under the subsidy program. The financial market crisis has made it difficult for developers to line up financing for solar power projects. Spain, which added a few gigawatts of solar in 2008 alone, now has a 500-megawatt cap for 2009. All of these forces have led to an oversupply of silicon panels.

“As governments — Germany and Spain were a driving force – in the solar industry’s run-up, they were a factor in the downturn. Once the recession is over and liquidity returns, they will mitigate the overcapacity, particularly as prices are so low and there is pent-up demand for new installations.”

Impact of Q4 on overall prices and industry

Another aspect worth examining is the overall impact of this (Q4) on overall prices and the industry.

Dr. Castellano said that silicon used to sell for more than $300 per kilogram on the spot market and $150 per kilogram for long-term contracts a few years ago. Silicon prices have since fallen significantly over the past year. In fact, the long-term contract price has dropped about 50 percent, close to the spot market price of $67 per kilogram, or about $0.50 per watt.

“Polysilicon panels are selling at $2.25 to $2.50 per watt from $4.17 in Q2 2008. We expect prices to decline further throughout the remainder of the year,” he noted.

In part 2 of this conversation, I will be discussing additional capacity in solar, new capacity in India, and of course, lessons to learn for the Indian solar industry. Watch this space, folks!