Archive

Posts Tagged ‘semiconductor policy’

How Taiwan government reacts to DRAM turmoil is a lesson in itself!

Taiwan based DRAMeXchange recently sent me a release, which discussed in length the steps the Taiwan government is taking in an attempt to “save one of the ‘2 trillion twin stars’, the DRAM industry”. The Taiwanese Ministry of Economic Affairs (MoEA) was designated to draft the policies, principals, strategic goals and strategic directions of the DRAM industry rescue plan.

According to DRAMeXchange: At 6 PM, December 16, the Taiwanese Ministry of Economic Affairs held a press conference about the DRAM rescue plan, emphasized in the past 10 years the investment amount of the DRAM industry surpassed NT$ 850 billion, and created a complete industry supply chain, which widely covers upstream chip makers, to downstream packaging and testing companies, and module houses. If the recession brought down the industry, the Taiwan industrial chain will be affected severely.

The Taiwanese government showed sincerity and willingness, and hoped that Taiwanese DRAM vendors can actively start to consolidate horizontally and vertically, and make joint proposing plans to the government. The government will not take the leading position, but the strategic direction is long term integration, which is not just merger but also includes cooperation of co-research, co-develop, and co-manufacturing.

The government also emphasized that it will tend to strengthen the relationship among the co-operation of Taiwanese, American, and Japanese DRAM vendors.

In another report, Gartner has gone as far as dubbing the DRAM industry as the wild card for the semiconductor industry in 2009! The DRAM industry has been in a downturn for the past 18 months and losses are now approaching $12 billion, it says.

How the Taiwanese DRAM industry reacts to the efforts of the Taiwan government will be visible in the coming months. Among other bail out plans, the Taiwan government has also focused on the need for the local industry to develop its own technology.

Taiwan takes great pride in having been a leader in technology and R&D for long. If the DRAM industry does not recover quickly enough, it would indeed impact the country’s industrial chain as well.

What’s interesting to note is the key role the government of Taiwan is playing in all of this. It again stresses the importance of government contribution within the semiconductor industry. And, there is also a lesson in all of this for India!

Closer home, in India, I am (and I am sure, interested readers and parties are too) still waiting to hear on what happened to the several proposals that were received for solar/PV, as well as on the various state policies, especially, Karnataka.

All believe that these would surely get pushed through in the new year. However, there is a need to show some speed in this regard as well. You cannot afford to wait for too long in the semiconductor industry. The SemIndia fab story is all to well known and hopefully, still fresh in everyone’s minds.

Get ready for building integrated photovoltaics (BIPV)

Building integrated photovoltaics or BIPV! Hey folks, prepare yourself to hear more about this term and the technology for quite some time to come! Solar/PV will be the next big story in India, and BIPV should be right up there at the top!

While BIPV is not yet talked about a lot in India, though, it may surprise many that there has been a deployment in India, I am sure that BIPV will be doing the rounds very soon.

There’s another interesting angle to the BIPV, rather, solar story. Can EDA play a role here? I will examine this angle some time later.

First, what is BIPV? According to PV Resources, BIPV is merely photovoltaic systems integrated with an object’s building phase. They are built/constructed along with an object, or planned together with the object. Yet, they could be built later on.

The following BIPV systems are said to be recognized:

* Facade or roof systems added after the building was built.
* Facade integrated photovoltaic systems built along with an object.
* Roof-integrated photovoltaic systems built along with an object.
* “Shadow-Voltaic” – PV systems also used as shadowing systems, built along with an object or added later.

If there are more, kindly share the information with me!

Now, to India. Just recently, Dr. Madhu Atre, president, Applied Materials India, referred to the use of BIPV during a discussion. He said that for energy-efficient glass, you could save on AC costs, etc., by using building integrated photovoltaics (BIPV). I hope we take serious note of what Dr. Atre said!

Didn’t they say green IT was the most used and abused term? We really love talking so much about green IT. Well, here’s an outstanding example, and actually, an example very few have really bothered to look at, so far, at least.

Staying with India, very few know that SunTechnics India, a brand of Conergy Group, a leading supplier of solar system integration, completed the design and installation of India’s first green housing project facilitated with building-integrated solar power.

The 58 kilowatt project was developed in partnership with the West Bengal Renewable Energy Development Agency (WBREDA) as an initiative in solar architecture for the Rabi Rashmi Abasan eco-friendly housing complex at New Town Kolkata, of all places! Power will be fed into the public grid and facilitate electricity needs for 25 residential buildings and a community center.

If anyone has any doubts about the scope and power of solar or BIPV, take a look at Nanomarkets’ report, which predicts that the market for BIPV will reach over $4.0 billion in revenues by 2013 and surpass $8 billion in 2015.

Late last month, I had written about certain steps Karnataka and the other states could adopt as part of a semicon policy.

Do include BIPV in your plans!

Actually, BIPV is very much part of the Indian semicon policy as well. West Bengal is probably the first state to have successfully implemented BIPV in a project. Congratulations are due!

Now, UK seeks semicon ties with India!

Just a couple of days ago, I had touched upon the growing global interest in the Indian semiconductor industry. Well, late last evening, I was present at the release of an important study that seeks collaborations between semicon firms from India and the UK! Talk about interest!!

The India Semiconductor Association (ISA) and the UK Trade & Investment and Science & Innovation Network has launched a study titled “Scope for collaboration between India and the UK in semiconductor driven industry 2008”. The report was launched by Richard Hyde, head – British Trade Office, Bangalore and ISA chairman Jaswinder Ahuja.

Given India’s growing presence in the global semicon industry, the study comes at the right time. UK and Indian semiconductor firms can collaborate to boost India’s IP creation and build next-generation products. There are potential synergies between the two nations in areas such as design, applications and devices.

Indian semicon firms specialize in VLSI, hardware/board-level design and embedded systems in wireless communications, computing and networking. In turn, the UK’s strength lies in IP creation and complete product development.

Richard Hyde remarked that there was lot of compatibility between the UK and Indian semiconductor companies. The study also laid the foundation for the forthcoming Semi Conclave, scheduled for September 15-16 in Bangalore, to be followed by similar events in Hyderabad and New Delhi. “It will bring together the industry and the academia, along with a visiting delegation from the UK.” This event will be jointly organized by ISA, UKTI and SIN.

V. Ravichandar, CMD, Feedback Consulting said the first challenge while preparing the study was to find high-quality data. The ISA in India and the NMI in the UK had such data.

He added: “Firms that exist in India and the UK are essentially design firms. They become complementary as you collaborate.” He highlighted IP creation and product development as the strength of the UK firms, and computing, networking and communications as the strength of the Indian semiconductor firms.

The best fit — Indian universities and UK universities — can be leveraged in the short run. Commenting on clusters, while these were built around places such as Bangalore, Chennai, Hyderabad and New Delhi in India, the UK has clusters in South-East England — in hardware design, Scotland, East England — software engineering, and a balance mix of companies in the South-West of England. India can provide skills in VLSI and EDA, as well as the large talent pool.

The next best fit lies in collaboration between the UK companies and the talent pool in India, which could go a long way in bringing down the research costs. Another fit could be between the companies in the UK and India, or the UK universities and Indian companies. However, the Indian companies might not be able to bring in the kind of funding required for high-end R&D as they are not mature enough.

Another fit could well be sharing of best practices, such as those brought by the Engineering and Physical Sciences Research Council (EPSRC) and EUROPRACTICE.

“The Indian government also needs to come forward beyond the semicon policy.” Ravichandar added. “There is scope for 30-40 percent reduction in R&D expenses, should collaborations happen between semicon firms from the UK and India.”

Poornima Shenoy, president, ISA, added that the ISA had initiated a Country Series, focusing on specific geographies of relevance to the industry. The report with UKTI is the first in this series.

Growing interest in Indian semicon — top 10 most read articles

It is soon going to be a year since the semicon Web site was launched by CIOL. Over the past year, I have noted with delight the growing interest in the Indian semiconductor industry.

Here is a collection of the 10 best articles for my readers. All articles link to those appearing on CIOL.

1. Indian semicon industry: Early steps taken, miles to go!
The Indian semiconductor design industry had a turnover of US $3.2 billion in 2005 with an engineering workforce of around 75,000. It is estimated to reach US $43 billion by 2015 and provide jobs to 780,000 professionals with a CAGR of around 30 percent for this period.

2. Indian semicon special: Increasing brand value for semicon within India
S. Janakiraman, president and CEO –- R&D Services, Mindtree Consulting, and chairman, India Semiconductor Association (ISA), is quite bullish on the advantages of India and the opportunities provided in the Indian semiconductor industry. Here, he speaks on a host of topics, ranging from the outlook for next year, as well as the fab and semiconductor policies, Indian ecosystem, etc.

3. Indian semicon special: Is the timing right for having fabs in India?
It has been some months since the Indian government announced the semiconductor policy. Some fabs are on the way, and lot of CEOs and other industry leaders from leading global semiconductor majors have been visiting India lately.

4. Indian fab guidelines promise exciting times for semicon, electronics
India seeks investments in ecosystem units for LCDs, OLEDs, PDPs, solar cells, photovoltaics, storage devices, advanced micro and nanotech products, etc.

5. Indian semicon policy ground breaking
These comments from Michael R. Splinter, president and CEO, Applied Materials, were enough to indicate how much the Indian semiconductor policy, announced recently by the government of India, has caught the attention of the global semicon majors.

6. Indian ecosystem will not enable faster product development cycles
The economy of scale may also not justify having a wafer fab facility to cater only to the Indian market, says Dr. H.V. Ananda, Synplicity.

7. India should be known for its semicon might
The semiconductor industry is poised for high growth and will make all round progress be in design or manufacturing or consumption. Issues to tackle are the rising costs and not yet conducive infrastructure.

8. ISA-F&S: India growing almost thrice as faster as global semicon
According to India Semiconductor Association (ISA) and Frost & Sullivan (ISA-F&S), India’s 2007 annual growth in semiconductor market is nearly triple the rate at which the global semiconductor market is expanding.

9. India ascends in the embedded value chain
Indian semicon, embedded design industry to grow from $3.25bn in 2005 to $14.42bn in 2010 and $43.07bn in 2015.

10. India rapidly becoming hub for embedded designs worldwide
India design services companies are involved in embedded hardware and software design in the latest embedded market segments such as automotive infotainment, digital security and surveillance.

I’d like to say a very big thanks to all of my readers. I am also working on another semicon special, which should be out next month on CIOL. The semicon special for 2008 — a collection of industry leading articles, will be online middle of next month.

Outlook for Indian semiconductor industry in 2008

S. Janakiraman, president and CEO –- R&D Services, Mindtree Consulting, and chairman, India Semiconductor Association (ISA), is quite bullish on the advantages of India and the opportunities provided in the Indian semiconductor industry. Here are some notes on the outlook for the Indian semiconductor industry in 2008.

Indian semiconductor industry to grow 25-35 percent in 2008
There has been an increasing trend of an increasing brand value for semiconductors within India. MNCs, especially are looking at semiconductor related outsourcing from India. We are also seeing lot of traction, from third-party service providers, like us — Mindtree, Wipro, Sasken, etc., as well as captive centers of MNCs like STMicroelectronics, NXP, etc.

In terms of growth plans, all leading MNCs, like NXP, Freescale, STMicroelectronics, etc., are planning to grow significantly from their India centers. They are strongly building partnerships with Indian designers.

From the design side, India is also seeing an increase in various activities, such as more complex analog designs and more complex digital designs. We are seeing more of physical designs happening, and even taking those designs up to the foundries are increasing as well. “We foresee 25-35 percent likely growth in the Indian semiconductor industry during 2008,” said Janakiraman.

Software is very critical to succeed. Various Indian providers, including Mindtree, are developing software for semiconductor-related products that are being designed by the overseas semiconductor companies.

Fab policy — More of ATMP
The fab policy announced by the government of India is really attractive and mostly on par with other countries. A semiconductor fab requires very high capital-intensive investment. In 2008, we will be probably seeing more of the assembly, testing, marking and assembly (ATMP) happening in India.

The fundamental fabs are still a little far away. Most companies are likely to start off by initially testing waters by making some level of investments in ATMP before moving on to fabs. One cannot also rule out the prospect of some leading Indian company investing in fabs.

Lot of the big MNCs have been moving to Fab-Lite, having already announced Fab-Lite strategies. They are moving to manufacturing to with people like TSMC, Chartered, etc. If manufacturing happens in the fabs, it would not be from any of the integrated device manufacturers (IDMs). It may also happen from Indian companies who are into manufacturing.

Electronics manufacturing has already moved on to the electronics manufacturing services (EMS) vendors. Similarly, chip vendors are also moving on to third-party providers. MNCs like TI, LSI Logic, etc., are moving away from manufacturing and moving that to Charter, TSMC, etc.

Fab companies will also look at India as the fab policy will look attractive to them. “Those questioning India’s need for fabs would feel terribly missing out on the opportunities currently being provided by India, by 2015,” said Janakiraman.

Product companies in India
Over the next one to two years, we are likely to see more product companies emerging from India. Companies like Tejas are already present in India. Down the line, this will percolate into semiconductors. Opportunities are bound to emerge. It means, first, there will be companies manufacturing electronics products, which will later move on to the emergence of semiconductor product companies.

As for Indian companies into manufacturing electronics products, the ISA chairman feels that there would be more of high-complexity, medium volume products. These would probably be manufacturing networking, automotive, navigation products, etc., which are more rich in software, but are medium volume in production.

Impact of semiconductor policy
According to Janakiraman, the interest in India has only increased since the announcement of the semiconductor policy. As per the announcement, the government of India will bear 20 percent of the capital expenditure during the first 10 years for units located inside SEZs and 25 percent for those located outside.

For semiconductor manufacturing (wafer fabs) plants, the policy proposes a minimum investment of US $625 million. The minimum investment for for ancillary plants is US $250 million. The government’s participation in the projects would be limited to 26 percent of the equity portion. The key benefit is the grant of the SEZ status.

The Indian semiconductor policy is applicable for manufacturers of all semiconductors, displays – including LCDs, organic light emitting diodes (OLEDs), plasma display panels (PDPs), and any other emerging displays, storage devices, solar cells; photovoltaics; other advanced micro- and nanotechnology products; assembly and test.

Advantage India
India is now presenting a great opportunity to the world, in fact, offering triple advantages. India has a very rapidly growing domestic market, growing at a CAGR of 30+ percent. India has achieved global recognition for back-end services -– having become a proven case for IP, embedded systems and IC designs.

India is also an attractive destination for manufacturing investments. It further boasts of a highly skilled employee base, and a fast and upcoming modern infrastructure –- SEZs. India also enjoys proximity to the EU and the MEA markets. It also boasts of freight cost, said to be 20 percent cheaper than China, leading to faster delivery and lesser pipeline inventory.

Indian ecosystem maturing
India is aligning itself with the global semiconductor market by creating high value work in VLSI, and board design and embedded software. Companies with domain expertise are driving Indian businesses. India has become the world’s destination for semiconductor design and embedded software, and is increasingly becoming the source as well.

In terms of consumption, the India semiconductor total available market (TAM) revenues are likely to grow by 2.5 times, while the total market (TM) is estimated to double in revenues by 2009. India’s semiconductor market share is likely to be 1.6 percent of the global market by 2009 in comparison to 1.1 percent in 2006.

Regarding the growth drivers for electronics manufacturing in India, telecom and IT & OA (office automation) segments will account for almost two-thirds of the semiconductor TAM by 2009. Telecom’s share has been estimated to grow from 21.2 percent in 2006 to 41.1pc by 2009.

According to ISA estimates, TAM revenues are likely to grow by 2.5 times and TM revenues are likely to double their revenues by 2009 as against 2006. Growth of TAM revenues is 35.8 percent compared with just 26.7 percent for TM revenues, thereby signifying an increasing manufacturing index for different electronics products in India.

The decline in ASP (average selling price) of semiconductors and hence, of electronic products, is largely offset by the higher unit sales of different electronics end use products.

Indian electronics industry — 2010 scenario
India will have a very strong electronics scenario by 2010. The installed base of mobile phones will go up to 500 million. The installed base of PCs will move up to 65 million. The IT enabled services (ITeS) and software exports has been estimated at US $60 billion.

There will likely be about 40 million new Internet connections, with at least 50 percent of those being broadband connections. The nationwide TV broadcast is likely to become digital by 2015, beginning 2010. In that scenario, there would be significant opportunity for set-top boxes (STBs) consumption and manufacturing. There will also
be an estimated over US $10 billion investment in e-governance initiatives and the national ID card.

Is the timing right for having fabs in India?

Several majors have announced their Fab-lite strategies, and so, IDMs will become likely become fabless units of tomorrow. In this scenario, is the timing for setting up fabs in India right? What is the direction ahead for the Indian semiconductor industry?

Commenting on the upcoming fabs in India, Anil Gupta, MD, India Operations, ARM, said: “Yes, we do need the fabs to complete the ecosystem. The question is: Is the timing right? We have our own strengths. Why not capitalize on those?”

It is important to determine what India is doing as part of the global semiconductor industry. “What are we doing as an industry? Fabs are definitely a good idea. We also need to address things like — can we make products and more importantly, should we make products!”

Gupta pointed out Infineon, NXP, etc., had announced Fab-Lite strategies. Even Texas Instruments was moving to a Fab-Lite strategy. “IDMs are going to be the fabless units of today and tomorrow,” he added.

Coming back to the point of manufacturing products in India, he said: “We need to be able to conceptualize products for the mass market. Are we willing to take the risks? With services, the risks are significantly lesser. Companies are innovating on their service models. On the product side, India should do that as well. Maybe, we will do it too.”

As for the industry growth drivers, consumer applications would become even more atractive. “There are mobile phones, gaming applications and others, which will drive growth,” he said.

Yield management crucial
According to Gupta, yield management is crucial. While designers are well aware of yield management, the adequate tools are not yet there in place. The direct link
has yet to be established for implementing DFM/DFY technique.

Designers are always looking to prove how to improve yield. It is critical for designers to have access to the relevant information that would indicate that, say, some modification in design would lead to 10 percent increase in yield. Gupta said, “As much as we move to 45nm, to 32nm to 22nm and so on, the problems are going to become more complex and magnify.”

SOI addresses power, performance scaling issues
There is the silicon-on-insulator technology or SOI. SOI is said to improve power consumption, reduces leakage and allows better performance. Implementation of SOI technology is one of several manufacturing strategies employed to allow continued miniaturization of microlectronic devices.

ARM acquired SOISIC, a leading company in physical IP based on SOI technology last year. The move has enabled ARM to strengthen its physical IP portfolio by adding SOI technology.

“SOISIC’s niche is in developing SOI based IPs,” Gupta added. SOI addresses the power and performance scaling issues associated with traditional bulk CMOS processes as they migrate to ever-smaller geometries. “It is very clear that design starts for 45nm – 32nm – 22nm etc. will be very low. Each process geometry has to give returns,” Gupta added.

Role of IPs
So what’s the role of IP in the gameplan? ARM is trying to enable that on technology side with SOI and bulk CMOS. He noted: “You need building blocks to make things happen faster. From an IP perspective, analog IP is very, very closely tied to the process. In that respect, IP has a huge role to play.”

The semiconductor IP is said to be a $1.5 billion market. ARM currently has 30 percent share of that market.

From an Indian perspective, there are Indian companies who are building and also re-using IPs, as does ARM. However, ARM also has royalties for its IPs. On usage, Gupta said that physical IPs had greater challenges regarding re-use.

Mali55, Mali200 from India
Commenting on ARM’s India operations, Gupta said ARM India develops physical IPs, processors, etc. “There’s so much of verification and testing involved to make things work,” he added. ARM India currently has a workforce of 300+.

ARM India has done work on 65nm as well as physical IPs for 45nm. “We are also doing studies on 32nm,” added Gupta. ARM India released the Mali55 and Mali200 processors.

The ARM Mali200 graphics processor unit (GPU) delivers 3D graphics for next-generation mobile games on smartphones and other high-end portable devices. With a very small footprint, the ARM Mali55 processor brings rich 3D graphics capabilities to low-cost feature phones for the first time.

Besides these, a lot of software — embedded, drivers, stacks, etc., are being developed in India. ARM India also provides lot of support for various design implementations. “We have over 2,000 ARM certified professionals in Bangalore alone and over 7,000 in India,” he said.

ARM India has two other programs. Companies like HCL, Sasken, Mindtree, Wipro, etc., are ARM approved design centers (ADCs) or partners. “If we have any new product, we ensure that our partners become acquainted with those,” said Gupta. The other program is the ATC (training). Cranes Software is ARM’s approved ATC.

Applied Materials CEO on semicon sustainability and energy management

“The Indian semiconductor policy is really ground breaking. Hopefully, it will build great business.” These comments from Michael R. Splinter, president and CEO, Applied Materials, were enough to indicate how much the Indian semiconductor policy, announced recently by the government of India, has caught the attention of global semicon majors.

Mike Splinter was delivering his lecture at the Thought Leader Series organized by the India Semiconductor Association (ISA), where he also highlighted the needs of sustainability and energy management from a global perspective.

According to him, some things never changed in the semiconductor industry, such as: technical innovation being the most viable lever for productivity, end of optical lithography being imminent, no imminent change in fab economics ($/die), growth in complexities of products and applications.

“Through all of these times, the Moore’s Law has persisted. The complexity of products have increased,” he added. Another thing that hadn’t changed was the growing need for sustainable practices.

Citing statistics, he said that the semiconductor industry was growing 5 percent this year, while the semiconductor equipment industry was growing at 3-5 percent during 2007. “Memory continues to grow very rapidly. NAND flash is a killer app,” Splinter noted.

India, according to him, has a major role to play in the semiconductor domain. India’s strengths lie in world class IC design and R&D capability, growing market for consumer electronics (CE), and an increasing need to address both global and industry challenges — in terms of sustainability and energy use.

Challenge of sustainability
Touching on the growing importance of sustainability, Splinter cited The Economist, which reported that $70bn had been spent globally in clean tech research and funding. Further, the IPCC reported that the evidence of human caused global warming was equivocal.

While economic growth was driving demand and the BRIC (Brazil, Russia, India and China) countries were accelerating it, there was also an increasing use of chips in consumer electronics products. This translated into an increasing use of energy. “All of these factors, together, make sustainability even more challenging,” added Splinter.

Splinter gave an example of LCD TVs, which are likely to grow 65 percent this year. Now, 90 percent of the power in LCD TVs goes into the backlight. If new technologies could be developed, those would certainly assist in saving more power. Another example was that of servers, laptops and TVs together accounting for 8 percent of global power consumption. That’s a lot of power, if the global power is estimated at 5TW or so. It needs to be reduced as well.

So what is the waste and energy impact of consumer electronics? For starters, there are increasing energy consumption and recycling challenges. Next, manufacturing requires a lot of water, energy and materials. Another impact is the waste management within the manufacturing value chain. Splinter said, “The environmental impact can be reduced by clean tech products and sustainable manufacturing.”

Need for energy efficient chips
Energy definitely needs to grow faster than the global economy. There is also a need to think about the environment and waste management. There is a need to increase the energy efficiency in chips, instead of solely focusing on performance.

Splinter said the time had come to take major steps, such as producing energy efficient chips. Applied Materials itself will be working on reducing the energy consumption in all of its practices. The semiconductor equipment maker will also be adopting clean energy in all of its facilities. The time has come for all to work together on energy use, Splinter added.

On solar, he noted that it had not yet managed to achieve scale. However, Germany had strongly pushed it, providing manufacturing incentives. “The scales are now starting to happen in Europe, especially, Germany,” he added. “There is pretty good motivation and incentive to deploy solar here, in India, as well.”

Indian hardware policy to address infrastructure issues

Following the success of India’s semiconductor policy, the government of India is well on its way to announce a new hardware manufacturing policy, hopefully sometime this month.

According to M. Madhavan Nambiar, Additional Secretary, Ministry of Communications & Information Technology, Department of Information Technology, the hardware policy should be coming shortly, where, the government is looking to address infrastructure related issues.

Speaking with him on the sidelines of the Thought Leader Series organized by the India Semiconductor Association (ISA), he said the hardware policy would still take some time. “As a part of it, we are looking at IT investment regions.” These would be set up in 40km areas, and each region would be an entire ecosystem in itself.

Nambiar added: “We are also looking at very good public-private partnerships. We have to develop the manpower.” The Department is working with the Labour Ministry and other organizations in order to set up skill development units. It is necessary for skiils to keep pace with technology.

The to-be-announced hardware policy will also be looking at taxes, etc. “It is a recommendation that we are making,” he said. “For India to be able to attract investments, we nust ensure that we are the best in class.”

Touching upon the semiconductor policy, he said it was important that this policy was pro-active and friendly. “We need to see how best to provide comfort levels to those investing,” Nambiar said.

It was necessary to have a strong semiconductor industry in India, as all leading countries, such as the USA, China, Taiwan and Japan had equally strong semiconductor industries. There has since been lot of interest in fabs and ecosystem units, and some of those were in the process of being set up.